Overblog Suivre ce blog
Administration Créer mon blog

Articles avec #r catégorie

Schematizing the variance as a moment of inertia

Publié le 6 Octobre 2013 par Stéphane Laurent dans R, Statistics

In order to make a presentation, I was wondering how to display the variance of a distribution, or the variance, of a sample on a graphic. Finally, I've found this solution: What is this “ellipse” with an arrow ? This is a picture commonly used in classical...

Lire la suite

Using R to compute the Kantorovich distance

Publié le 2 Juillet 2013 par Stéphane Laurent dans R, Mathematics

This article is now at http://stla.github.io/stlapblog/posts/KantorovichWithR.html.

Lire la suite

Sample size determination for a Gaussian mean

Publié le 13 Avril 2013 par Stéphane Laurent dans R, Mathematics, Statistics

Sample size determination for a mean Sample size determination for a mean This article explains the methodology implemented in the Shiny application availbale at http://glimmer.rstudio.com/stla/samplesize_mean/ Statement of the problem Consider a preliminary...

Lire la suite

A reactive sliced 3D surface response in a html report with Shiny

Publié le 15 Mars 2013 par Stéphane Laurent dans R, graphics

A reactive sliced 3D surface response A reactive sliced 3D surface response In my previous article I showed an interactive 3D surface response fitted from a model with two continous predictors. But when there is more than two continuous predictors, since...

Lire la suite

Including an interactive 3D rgl graphic in a html report with knitr

Publié le 8 Mars 2013 par Stéphane Laurent dans R, graphics

This article is now at http://stla.github.io/stlapblog/posts/rgl_knitr.html. - CanvasMatrix.js - testgl1snapshot.png - testgl2snapshot.png - CanvasMatrix - Copie.js

Lire la suite

The binary splitting with the R `gmp` package - Application to the Gauss hypergeometric function

Publié le 30 Novembre 2012 par Stéphane Laurent dans R, Mathematics

In this article you will firstly see how to get rational numbers arbitrary close to \( \pi \) by performing the binary splitting algorithm with the gmp package. The binary splitting algorithm fastly calculates the partial sums of a rational hypergeometric...

Lire la suite